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Quasiclassical states of the Coulomb system and so(4,2) 
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Department of Mathematics, The University of Queensland, Brisbane, Queensland, 
Australia 4072 

Received 6 December 1989, in final form 6 February 1990 

Abstract. Quasiclassical bound states of the quantum mechanical Coulomb system are 
constructed. They are initially Barut-Girardello coherent states of the natural so(4,2) 
dynamical algebra, and evolve in accordance with the Schrodinger equation. The 
asymptotic behaviour of expectation values and uncertainties of all the so(4,2) observables 
is examined in detail for those states having a mean value of n, the principal quantum 
number, approaching infinity. There is no spreading with respect to these observables over 
times of the order of r, the corresponding classical period, but the states do spread over 
times of the order of T ” ~ .  Periodic but successively weaker resurgences of coherence are 
found over times of the order of r4’3. It is shown explicitly that the states are quasiperiodic 
over extremely long times. 

1. Introduction 

Schrodinger (1926) constructed special wavefunctions +(x, t )  for the simple harmonic 
oscillator in quantum mechanics, corresponding to states which today we call coherent 
states. For any such state, the probability density I(/*(x, t ) + ( x ,  t )  does not spread in 
the coordinate x with increasing time t, and remains localised near a( t ) ,  a solution of 
the classical equations of motion defining a trajectory of the classical oscillator. In 
these states the system therefore behaves to a good approximation like a classical 
particle performing simple harmonic motion. 

In the same paper, Schrodinger raised the possible existence of analogous ‘quasi- 
classical states’ for the Coulomb system. It is understood now that, because of the 
nonlinear dynamics in the Coulomb case, genuinely ‘non-spreading’ states that follow 
a classical trajectory do not exist. However, there can exist states for which the rate 
of spreading, measured in terms of the expectation values of suitably chosen dynamical 
variables, is slow in a well defined sense, and such states may also be called quasi- 
classical. There have been several attempts to construct states of this type for the 
Coulomb system. 

Brown (1973) superposed bound energy eigenstates in order to construct quasi- 
classical states corresponding to circular orbits. These states spread over times of the 
order T ” ~ ,  but not over times of the order r, where r is the corresponding classical 
period. In this respect they are qualitatively similar to the states we shall construct 
below, but as well as being limited to circular orbits, Brown’s method can be criticised 
for its somewhat ad hoc nature. Mostowski (1977) defined (bound) coherent states 
for the S0(4,2)  dynamical group of the Coulomb system, following Perelomov’s (1972) 
general procedure, and allowed these states to evolve under the action of the Coulomb 
Hamiltonian. He stated that the resultant states behave quasiclassically, with significant 
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spreading only over times of order T ’ / ~ ,  the spreading being measured by the uncertain- 
ties of observables corresponding to the group generators. However the details of his 
calculations do not seem to have been published, and our own calculations do not 
support his conclusions. (See the comments on Perelomov coherent states in section 
3.) Nieto and Simmons (1979) and Gutschick and Nieto (1979) used their method of 
‘minimum uncertainty coherent states’ to define quasiclassical bound states for the 
radial operators of the Coulomb system, but did not consider the full three-dimensional 
problem, nor determine a characteristic time for spreading. Bhaumik et al (1986) used 
the Kustaanheimo-Stiefel ( 1965) transformation to convert the classical Coulomb 
problem into a constrained four-dimensional isotropic harmonic oscillator problem, 
and then used coherent states of the corresponding quantum oscillator to define 
quasiclassical bound states for the quantum Coulomb system. They showed that these 
states also spread only over times of the order T ~ ’ ~ ,  and gave a detailed discussion of 
behaviour in the case of circular orbits. However, in the case of elliptic orbits, they 
stated without proof that spreading occurs over a circular annulus (presumably with 
its centre at the centre of attraction), a result that appears inconsistent with the constancy 
of the Runge-Lenz vector (and of its uncertainty). Gerry (1986) and Gerry and Kiefer 
(1988) constructed quasiclassical bound states which depend on ‘fictitious’ time vari- 
ables; these states do not evolve in accordance with the Schrodinger equation. The 
quasiclassical states constructed by Garbaczewski and Prorok (1987) also fail to satisfy 
that equation. 

Our object in what follows is to describe quasiclassical bound states based on an 
so(4,2) dynamical algebra. Initially, such states are taken to be S0(4,2) coherent states 
in the sense of Barut and Girardello (1971), and they then evolve in accordance with 
the Schrodinger equation. For a given classical orbit, either circular or elliptical, these 
states do not spread over times of the order T, the corresponding classical period, but 
only over times of the order 77’6. Spreading occurs around an orbit but not away from 
it, in a manner that is, in particular, necessarily consistent with the constancy of the 
Runge-Lenz vector. For these states, spreading is defined in terms of the uncertainties 
of the observables corresponding to the s0(4,2) generators, which are all Hermitian. 

2. The dynamical algebra s0(4,2) 

It is well known (Malkin and Man’ko 1965, Bacry 1966, Musto 1966, Pratt and Jordan 
1966, Barut and Kleinert 1967a, b, Fronsdal 1967, Nambu 1967, Gyorgyi 1968, 1969, 
Barut 1972; Englefield 1972) that S0(4,2)  (so(4,2)) is a dynamical group (algebra) 
for the Coulomb system. In earlier work (McAnally and Bracken 1988), the following 
explicit expressions have been derived for the so(4,2) generators, acting in the subspace 
of bound states of the system; 

To( = N) = [ -2H]-”’ L = r x p  A = f (p  x L - L x p  -2rr-I) N 

r4f iT = ;{rp’U,[N 13 - rU,[ N f 13-‘ 2i( r *  p - i )  U,}N[ N 11-’ (1) 
r * i M  = {rpU, f i[frp2- ( r  p - i )p]  U*[ N * 13 *firU,[N f lI-’}N[ N * 13-’. 

Here N is the number operator, whose eigenvalue n E { 1,2, . . .} is the principal quantum 
number of the Coulomb system. On the ground state ( n  = l),  where their definitions 
in (1) break down, r 4 - i T  and r - iM are taken to vanish. We have set to unity the 
(reduced) mass m, Planck’s constant h, and the coefficient Ze2 in the potential, so that 
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the Hamiltonian has the form 

H = tp’ - 1/ r 

with r = [ r * r]’”, p = [ p * p]”’. In addition, 

U, = exp{i(r*p -i):  In( N[ N I]-’)} 

where the ‘ordered exponential’ is defined by 

“ 1  
n = O  n . exp{A:B}= 7 A “ B ”  (4) 

and multiples of the identity operator have been represented throughout by the 
corresponding complex numbers. (Note that in our earlier paper, we denoted To by 
r$, A by A*, etc.) The Hermiticity of the operators (1) (with respect to the usual 
scalar product, for which r and p are Hermitian) can be checked by evaluating their 
matrix elements between bound states in the coordinate representation. In order to 
check that they satisfy the so(4,2) commutation relations, we note that (McAnally and 
Bracken 1988) 

To = K-‘foK A = K - ‘ A K  etc ( 5 )  

where (Barut 1972) - 
f 0 -1 - 2 (  ‘P2 + r ) 

L = L = r x p  r = rp 

F 4 -1 - 2 (  ‘p2 - r ,  T = r . p - i  - - 
( 6 )  A: = i y  2 -  ( r e  p - i )p  - i y  2 2 P  

ni =$rp2 - ( r  p - i )p+f r  

and K is the ‘tilt’ transformation 

K = exp{ii:  In N } N  

K-‘ = exp{-ii: In F0}f;’. 
The so(4,2) commutation relations between the operators (6) are easily checked (Barut 
1972) and it follows from ( 5 )  that the operators ( 1 )  also satisfy such relations (McAnally 
and Bracken 1988), namely 

[Li, Lj] = iCijkLk [ Li, Mj] iCijkMk 

[Li, Aj]=i€UkAk 

[ro, r,] = i T  

[ro, MI = - i r  

[Li, rj] = ieukrk 

[r4, TI = -iTo 

[ro, r] = iM 

[ T, r,] = i r ,  

[ r 4 ,  A] = i r  
[r4, r] = iA [T ,A]= iM [T,M]=iA 

[Ai, Aj] = iEijkLk [MI, Mj] = -ie,j& [ri, rj] = -iCijkLk 

[Ai, Mj] = iTS, [Ai, rj] = iT,S, [ M i ,  rj] = iToS, 
with all other commutators vanishing. If we put 

(7) 
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then the relations (7)  are equivalent to 

[JAB, JCD] =i(gACJBD+gBDJAC -gADJBC -gBCJAD) 

where g = diag(1, 1, 1,1, -1, - I ) ,  so that the algebra is indeed isomorphic to so(4,2). 
Despite their complicated forms as functions of r and p,  the operators (1) are 

natural dynamical variables for the (bound states of the) Coulomb system. In particular, 
To, L, A are constants of the motion and, in the Heisenberg picture, T4*iT, r*iM 
have a simple time-dependence (McAnally and Bracken 1988): 

r4(r) * iT(  t )  = (r,(o) * iT(0)) exp(ii[  N * ~ ] N - ’ [ N  * 1 ] - ’ t >  

r(t)*iM(t) = ( ~ ( o ) * ~ M ( o ) )  e x p ( * i [ ~ * t l ~ - ’ [ ~ *  l]’-’t). (8) 

(Note however that in the present paper we work in the Schrodinger picture). The 
classical analogues of the variables (1) have simple meanings in terms of the geometry 
of an orbit (McAnally and Bracken 1988). This is well known for the constants of the 
motion To, L, A. Figure 1 shows the meaning of the remaining classical variables r4, 
T, r and M :  in the case of the scalar variables, r4 is given by EOX and T by EOY, 
where E is the eccentricity of the orbit, 

E = d‘l+ 2HL’. 

As the classical limit of (8) shows (McAnally and Bracken 1988), these remaining 
quantities all vary periodically in time with the classical period T = 2 ~ [ - 2 E ] - ~ ’ * ,  where 
E is the energy. 

It should be stressed that in the calculations that follow, the formulae (1) for the 
so(4,2) variables in terms of r and p are largely irrelevant. What are important are 
the simple so(4,2) commutation relations (7) ,  the particular irreducible representation 
of so(4,2) involved, and the relationship between the so(4,2) algebra and the dynamics 
of the system, as determined by the relation To = [ -2H]-I”. 

Figure 1. An elliptical orbit in the xy plane rescaled to have semimajor axis ro, showing 
A, r and M ;  r4/e and T / e  equal the Cartesian coordinates X, Y of the point Q. The 
lines OQ and OQ‘ are perpendicular. Angle w is the ‘mean anomaly’, and S corresponds 
to the centre of attraction. 
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We recall (Mack and Todorov 1969, Barut 1972) that the relevant representation 
of so(4,2) here is one from the ‘ladder’ series of degenerate representations. In 
particular, To has eigenvalues n = 1, 2, 3 , .  . . as already noted, and T,+iT, r + i M  
(r, - i T, r - i M )  are raising (lowering) operators for that eigenvalue. Certain ‘rep- 
resentation relations’ hold (Barut and Bohm 1970), in particular, 

(1‘4)2+ T2 = (I‘o)2- L2 = A’+ 1 

(rO)’-T2=M2-1 (To)’ - (I-,)’ = r2 - 1 

r 2 + ~ 2 = ( r o ) 2 + ~ 2 + 2  
(I-,)’+ (MI)’ = L2 - ( L , ) ’ +  ( A , ) 2 +  1 

( rJ2+ (M2)* = L2 - ( L2)2+ (A2)2+ 1 

(r,)*+ (M3)’ = L2 - (L,)’+ (A3)2+ 1 

L . A = L . M = L * r = O  

r2-M2+(r4)’- T 2 = 0  

Me + r * M + TT4+ r4T = 0. 

(9) 

These relations imply limitations on the way in which the expectation values and 
uncertainties of the variables (1) can vary with time. 

Having to hand the so(4,2) dynamical algebra, we can now proceed in either of 
two ways to try and construct quasiclassical bound states for the quantum Coulomb 
system. Barut-Girardello (1971) coherent states for the algebra so(4,2) can be construc- 
ted as common eigenstates of the commuting lowering operators r4 - i T, r - iM; or 
Perelomov (1972) coherent states for the group S0(4,2)  can be constructed by allowing 
finite group element representatives to act on the ground state. In either case, such 
coherent states can then be taken as initial states of the system and allowed to evolve 
under the action of the Schrodinger equation with the Hamiltonian (2), i.e. H =  
-i[ro]-2. The idea behind each approach is that, because of the simple commutation 
relations between the s0(4,2) generators and To (and hence H ) ,  the inevitable spreading 
of the states with time, or ‘loss of coherence’, may be minimal. The approach based 
on Perelomov coherent states is essentially equivalent to that taken by Mostowski 
(1977) but, as we see in the next section, this approach does not lead to states which 
can sensibly be called quasiclassical. 

3. The subalgebra so(2,l) and the one-dimensional Coulomb problem 

To illustrate the construction of quasiclassical states in a simplified framework, we 
imagine a system with an so(2, l )  dynamical algebra generated by Hermitian operators 
r,( = N ) ,  r4, T, with 

[I‘,, r,] = iT [r,, TI = -ire [ T, r,] = ir,. (10) 
The relevant representation of so(2, 1) is one from the ladder series with lowest weight 
1 (Barut and Fronsdal 1965), and is spanned by an orthonormal set of vectors In), 
n = 1,2, . . . satisfying 
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For the Casimir operator, we have 

- (r4)2 - T' = 0. (12) 

The relationship between the algebra and dynamics of this model system is fixed by 
supposing the Hamiltonian operator is H = -+[ so that we have the familiar 
Coulomb energy spectrum: 

(13) 
1 

2n H l n ) =  -7 In) n = 1 , 2 , .  , . . 

This algebraic structure may be regarded as a substructure of that appropriate to the 
three-dimensional case, as discussed in the preceding section. Alternatively, we can 
take this to be the structure appropriate to the bound states of a 'one-dimensional 
Coulomb system'. Indeed, we could express the s o ( 2 , l )  generators and the Hamiltonian 
in terms of a single coordinate operator x and a corresponding momentum operator 
p ,  by analogy with ( 1 )  and (2), but this not essential here. 

Normalised SO(2, 1 )  coherent states are defined by allowing the SO(2, 1 )  group 
representatives to act on the ground state \ I ) ,  and are given by (Perelomov 1972) 

In such a state, it is easily checked that 

1 + (z(' 4 Z l  

1 - lZl2 1 -lz12' ( N ) = -  AN = [( N 2 )  - ( N)2]1'2 = - 

The classical limit will correspond here to states with 121 += 1 so that ( N )  += CO (think of 
the correspondence principle). However, we see at once that, as Iz(  + 1 ,  

AN 1 - 
( N ) + , J z  

that is, the relative uncertainty in N does not go to zero. This makes the Perelomov 
coherent states quite unsuitable as initial values of quasiclassical states. The same flaw 
rules out the Perelomov coherent states in the S 0 ( 4 , 2 )  case. This contradicts the 
statement of Mostowski (1977), that 

for Perelomov coherent states with large ( N ) ,  but we find that statement inconsistent 
with Mostowski's own definition of those states (his equation (3)), which for suitable 
choices of parameter values, effectively coincide with the states (14). 

Normalised so(2, 1 )  coherent states are defined as eigenstates of the lowering 
operator T4-iT, and are given by (Barut and Girardello 1971) 

where z (the eigenvalue of T4-iT) can take on any value in the complex plane, and 
II is the first-order modified Bessel function (Abramowitz and Stegun 1965). In this 
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state, we find 

(where Zo is the zeroth-order modified Bessel function) and we then deduce from the 
asymptotic behaviour of the Bessel functions as Iz( + CO, 

that (N) - (z I  as IzI + CO. In this limit, AN - m, and so 

so that the relative uncertainty AN/( N) goes to zero as IzI + 00, as desired. 
The expectation values and the uncertainties of r4 and T are given by 

(r4) = f(Z + z*) (T) = $(z - z*) 

We see that when the system is in a Barut-Girardello state, equality holds in the 
generalised uncertainty relation: Ar4A T 2 i(r0). These states are therefore ‘minimum 
uncertainty states’ in this sense. Furthermore, as IzI + 03, (19) shows that 

+ O  
( Ar4)2 + ( A  T ) 2  

(r4)2 + ( o2 
as desired. 

The Barut-Girardello states evolve under Schrodinger time evolution as 

where we have set I$(O)) = 1 ~ ) ~ ~ .  Note that I$( r ) )  is not a Barut-Girardello state for 
t > 0 unless z = 0. The expectation value and the uncertainty of the constant of the 
motion To are of course constant in the state I $ ( t ) ) .  The expectation values of the 
operators r4 and T at time t are found from (20) to be 

C,( t )=cos S,( t )=sin x,yER. 
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Furthermore, we find 

together with its complex conjugate, so that 

where we have used (12). Thus 

I z I M2I z I 1 
((rd2)+(T2)=IZ12+ 1,(21zl) 

at all times, and therefore 

The expressions for the individual expectation values and the uncertainties of r4 
and T are intractable, but we are only interested in the asymptotic behaviour as ( z I  + 00. 

We find from (21) and (22), 

To obtain these results, we have introduced, for each value of z, and corresponding 
Barut-Girardello state, the operator 

N - I4 V ( 2 )  =- m 
with expectation value asymptotically approaching 0 and uncertainty approaching 1 
as IzI+co. Eigenvalues of V ( z )  are labelled U in (26). In the asymptotic limit, the 
probability distribution on the eigenvalues of V (  z) can be shown to be standard normal. 
The time dependence in the exponential in (26) then follows from (21) and (22). 

For times t of order 1zI3, i.e., times of the order of the classical period T =  
27~(-2(H))-~/’  = ~ T I z ) ~ ,  we put t = [1zI3 with 6 = 0(1) ,  so that we have from (26) 

(r, - i r) = z exp( -i[) + o(JT;S) ((r,-i~)’> = z2 exp(-2i[) + ~ ( I z l ~ ’ ~ ) .  (27) 
It can then be shown from the constancy of ((r4)2)+(T2)=((r0)2) that, for times of 
this order, Ar4 = m+ O( l ) ,  AT =m+ O( 1). The relative uncertainties of r4 and 
T therefore remain small and constant for times of this order. Also, according to (27), 
the expectation values of r4 and T follow the corresponding values for a classical 
trajectory: in fact, for times t =o(lz1”’), we have 

(r,(r)*iT(t))-(r,(O)*iT(O)} exp 
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The point in the plane with Cartesian coordinates ((r4), (T)) moves around a circle, 
with the classical period T (compare with the three-dimensional case, figure 1). The 
states we have constructed for the one-dimensional Coulomb system can therefore be 
regarded as quasicalssical for times of the order of the classical period ( t  = O(lz13)). 

For time t of order 1 ~ 1 ’ / ~ ,  we put t = ~ 1 ~ 1 ~ ’ ~  with a = 0 ( 1 )  and see that 

It can now be seen that for times of this order, the point with Cartesian coordinates 
((r4), (T)) continues to revolve in the plane around the origin at a constant angular 
velocity. However, its distance from the origin decays as a Gaussian function of time. 
On the same timescale, the uncertainties of r4 and T increase until (Ar4)2+(AT)2 
attains its maximum possible value of /zI2+ 1z1Z,(21z1)/Z1(21z1). Thus the state spreads 
over times of order 1z17/2, i.e. of order T ” ~ .  

It may appear that we now have the whole story regarding the asymptotic time- 
dependence of (r,) and (T) but this not the case. There is also some surprising 
behaviour for times of order 1zI4. If J is an integer and the time differs from $rJlz14 
by an interval of order I Z ~ ’ / ~ ,  then t = &rJlzI4+ a1z17’2 with a = 0(1) ,  and the phase in 
C,,(t) and S,,(t) of (21) for n = I z I + O ( m )  varies by approximately 27rJ between 
successive values of n. Successive contributions therefore tend to reinforce each other. 
After accounting for the appropriate integral multiples of 27r in the phases, we get 

(30) 
( - l )Jz  87rJlzl 9a2(  1 - i47rJ) 

4( 1 + 167r2J2) 
iam - (r4 -iT) -dm exp( -i -- 3 

so that ((r4), (T)) has phase 

87rJlzl 9 rJa2 
Q, = 7rJ - arg z +- + a\/n+itan-’(47rJ) - 2 2+o(1~1-1’2) 3 1+167r J 

and magnitude 

R =  

Therefore (r,) and (T)  become significant at times near f ~ J l z ) ~ (  = )J( ~‘ /27r ) ’ /~)  when 
the original coherence tries to ‘reassert’ itself. The peak magnitude is given by 
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so that successive ‘resurgences of coherence’ decrease in strength. Furthermore, the 
characteristic time occupied by the J th  resurgence increases with J, being proportional 
to -(-47~J). 

These results can be summarised as follows. The states are quasiclassical for times 
of the order of the classical period T, and the expectation values of the non-constant 
operators follow the classically predicted trajectory to within a factor of O( 1 ~ I - l ’ ~ ) .  

The uncertainties remain constant to within a similar factor. For times of order r7I6, 

the expectation values of the non-constant operators decay to zero and their uncertain- 
ties increase until the sum of their squares reaches the maximum possible value. The 
uncertainties become of the order of (r,) - IzI, so that for times of this order, the states 
are no longer quasiclassical. Effectively, the states ‘spread’ around the classical orbit. 
A surprising feature is that the states partially ‘reassert their coherence’, with the 
expectation values of non-constant operators diverging from zero, at regular time 
intervals of length $(74/2.n)”3. We can also show that each of the uncertainties Ar, 
and AT diverges from its limiting value of [f(lz12+ ~ Z ~ Z ~ ( ~ ~ Z ~ > / Z ~ ( ~ ~ Z ~ ) ) ] ~ ’ ~  at regular 
time intervals of +7~lz1~(  = : ( ~ ~ / 2 7 ~ ) ’ ’ ~ ) .  

These results are illustrated for the case z = 10 000 in figures 2-6 obtained by 
numerical evaluation of (21) and (22). For ease of comparison, the range on the 
vertical axis is from - 1 1  000 to 1 1  000 in each case. Figure 2 shows the behaviour of 
(r,) and (r4)fAr4 for three classical periods from t = 0 ,  and figure 3 shows the 
behaviour of ( T )  and ( T )  * AT for the same interval. The classical values have not 
been marked since they are virtually indistinguishable from the expectation values 
over this interval. Note that the uncertainties remain small but that they do  actually 
grow substantially over the interval. The reason for this is that the behaviour at times 
of order ) z ( ” ~  has a significant effect even for these small times. Note also the drops 
in the uncertainties of r4 and T when the expectation values reach their maxima and 
minima. These drops can be seen to arise from the fact that the state spreads around 

Figure 2. Behaviour of (r4) and (r4)*Ar4 with z = 10000 for three classical periods P 
from time I = 0. 
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the orbit, so that there is an angular spread in ((r,), (T))-space but no spread in the 
distance of ((r,), ( T ) )  from the origin. 

Figure 4 shows the behaviour of (r,) and (r4)*Ar4 for 60 classical periods from 
t = 0 evaluated at regular intervals of a single period and figure 5 shows the behaviour 
of ( T )  and ( T )  f AT for the same interval, also at regular intervals of a single period. 
Note that (r,) appears to decay away (along a bell-shaped curve) after about 20 
classical periods when, according to (29), ((T4)2+(T)2)’’* should be about 3% of its 
initial value. Note also that the uncertainties appear to level off after about 12 classical 
periods at which time their increase should be about 96% of the total increase. The 
other apparent pattern, that ( T )  appears to stay near zero, is a consequence solely of 
the fact that the evaluations have been made at integral multiples of the classical period 
(to bring out the Gaussian functional dependence in (r,)). In fact, ( T )  varies sig- 
nificantly away from zero between the evaluation times. 

Figure 6 shows the behaviour of R = ((r4)2+ ( T)*)”2  for 20 000 classical periods 
from t = 0. The behaviour described in (32) can now be seen to occur over this interval, 
and at the specific times discussed in the context of that equation. As can be seen 
from the figure, the sixth divergence of ((I-,)*+ (T)*)’/* from zero begins just after the 
fifth divergence has finished (and each successive divergence will begin before the 
previous one has finished). This arises because the process of divergence shows down 
each time and is associated with successively longer characteristic times: by the time 
of the fifth and sixth divergences, the characteristic times are of the same order as the 
regular interval (about 3300 classical periods). 

One further feature should be noted for the states we have constructed. Despite 
the spreading of these states, over times of order 1 ~ ) ’ ’ ~  when IzI is large, all of the states 
are in fact quasiperiodic: let a be an integer so large that 

where E is small and positive, and let t = 4 . i r ~ *  where 77 is an integer divisible by all 
integers less than or equal to a. Then 

(nl$(t)) = (nl$(O)) 

for n s a, and so Ill$( t ) )  - I$(O))ll < 2&. The expectation values (r,) and ( T )  therefore 
approach their initial values to within 2&Izl. The times involved can be seen to be 
extremely large, since In 77 = a +o((Y) (Apostol 1976). In particular, for IzI large and 
at times that are integral multiples of 4 ~ 7 7 ~  where 7 is an integer divisible by all integers 
less than or equal to IzI + ~ m +  1, then ( n l $ ( t ) )  = (nl$(O)) provided n s 121 + ~ m +  1. 
Therefore 

w{($(t)l$(o))l*erfK +o(lzl-1’2) 

(where erf is the error function erf x = 2 / G  I,” exp( - t 2 )  dt),  by which is meant that 
there exist po> 0 and 6 > 0 such that 

a{($( t ) l $ (o ) ) }  2 erf K - 6 1 ~ 1 - ’ / ~  if IzI > po. 

Furthermore, 
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so that the expectation values of r4 and T approach their initial values arbitrarily 
closely and their uncertainties approach their initial (and minimum possible) values 
arbitrarily closely. 

In fact, we do not require quite such extreme times for quasiperiodicity. If we take 
7) to be an integer divisible by all integers greater than or equal to IzI - ~ m -  1 and 
less than or equal to ( z (  + ~ m +  1, then 

% { ( + ( t ) l + ( o ) ) )  3 2 erf K - 1 + o ( \ z ~ - ’ / ~ )  

and 

In this case, 

In 71 = 2 ~ J n l n l z l ( l + o ( l ) )  

but the time required for quasiperiodicity is typically still extremely large. To demon- 
strate the extremity of the times involved, it is instructive to illustrate all the time 
intervals that have been discussed. For the hydrogen atom, the unit of time ( h3/  me4) 
is equal to about 2.4 x lo-’’ seconds. The classical period corresponding to z = 10 000 
is then about 1.5 x seconds. The characteristic time for ‘loss of coherence’ for 
z = 10 000 is about 1.6 x seconds, and the regular interval for the ‘departure from 
incoherence’ is about half a second. The time required for quasiperiodicity, that is, 
for expectation values to approach their original values to within 10-31z1, is in the 
region of times the age of the universe. 

4. Quasiclassical states for the three-dimensional Coulomb system 

The three-dimensional case is completely analogous to the one-dimensional case but 
the corresponding calculations are naturally more complicated. As in the case of 
so(2, l ) ,  the uncertainty of the principal quantum number of Perelomov states is of 
the same order as its expectation value in the asymptotic limit as ( N )  + 00, so we will 
work with the Barut-Girardello states. We start with the orthonormal basis 

{In, m,p):  n = 1 , 2 , .  . . ; I m ( + l p l + l s  n; n + m + p  odd}. 

These vectors are eigenvectors of N, L3 ,  A, corresponding to eignevalues n, m, p 
respectively. The phases have been chosen so that the matrix elements of the remaining 
so(4,2) operators L ,  +A, ,  L ,  - A , ,  etc. (where L ,  = L1 iL2, A, = A, i. iA2, etc.), are 
given by 

( ~ - + ~ - ) l n ,  m , p ) = [ ( n  - m  - p + l ) ( n + m + p -  ~)-j’’~In, m - l , p -  1) 

(L++A+)In,  m , p ) = [ ( n  - m - p - l ) ( n + m + p + 1 ) ] ” 2 ~ n ,  m +  l , p + l )  

(L--A-)ln, m, p )  = [ (n  - m + p +  l ) ( n  + m - p  - l)]1’21n, m - l , p +  1) 

(L+-A+)In,  m,p)  = [(n - m + p -  l ) ( n  + m - p +  l)]1’21n, m +  1 , p -  1) 

( M +  + i r+)(n,  m, p )  = [(n - m - p  - l > ( n  - m + p  - 1)]’’~1n - 1, m + 1, p >  
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(M--ir-)[n, m , p ) =  [(n - m - p +  1) (n  - m + p +  ~ ) ] ' / ~ l n  + 1, m - 1,p) 

(M-+ir-)ln,  m , p ) =  - [ ( n + m - p -  l ) ( n + m + p -  1)] ' /~1n - 1, m - 1,p) 

(M+-ir+)ln, m , p ) =  -[(n + m - p +  l ) (n  + m + p +  1)]"~1n + 1,  m +  1,p)  

( r , - i ~ - i r ~ - ~ ~ ) I n ,  m , p ) =  - [ ( n + m - p -  l ) (n  - m  - p -  ~ ) ] ' / ~ l n  - 1,  m , p + 1 )  

( r , + i ~ + i r ~ - ~ ~ ) I n ,  m , p ) = - [ ( n + m - p + l ) ( n - m - p + 1 ) ] " 2 1 n + 1 ,  m , p - l )  

( r , - i ~ + i r , +  ~ , ) l n ,  m, p )  = [(n + m + p  - l ) (n - m + p  - ~ ) ] ~ / ~ l n  - 1, m, p - 1)  

( r , + i ~ - i r , + ~ , ) I n ,  m , p ) =  [(n+ m + p +  l ) (n  - m + p +  ~ ) ] I / ~ l n  + 1, m , p +  1). 

The general Barut-Girardello state vector is found by diagonalising the commuting 
lowering operators r4 - i T, r - iM, or equivalently 

(34) 

a ,  = ;(ir, + M~ - r2+ i ~ , )  
a -1 - z(ir3 + M3 -T,+iT) 

b' =f(-iT, - MI -T2+iM2) 
(35) 

b2 = f( -ir3 - M3 -r4+ iT). 

From the representation relations (9), it can be shown that a ,  b' + a2b2 = 0 ,  so that the 
eigenvalues z, ,  z2, 5, ,  l2 of a , ,  a , ,  b ' ,  b 2 ,  respectively, satisfy Z , ~ ~ + Z ~ ~ ~ = O .  The 
Barut-Girardello states are found to be 

where I;' indicates that p must be summed over over integers of the same parity as 
n - l - l m l ,  and 

A(n, m, p )  = q ! ( q  - p ) ! ( q  - m ) ! ( q  - m - p ) !  

q = f ( n  + m + p  - I ) ,  
~ ( n ,  m, p ,  z, ,  z 2 ,  11, 12) = ~ l n z : " - ~ - ~ - I ) / ~  ( - 12) ( n - m + P  - 1 ) / 2  

= z ;  m zy + m  - P  - 1 ) / 2  ( - 1 2 ) ( n + m + p - 1 ) / 2  

- z (  n - m - p -  I ) / 2  ( n + m - p - l ) / 2  
( - 5 2 Y  51 

51 z 2  . 

- 

(37) Z ( n - m + p - 1 ) / 2  ( n + m + p - 1 ) / 2  - p  - - 

More precisely, P( n, m, p ,  z1 , z 2 ,  5, ,  J 2 )  is chosen equal to whichever of these four 
expressions is sensible (at least one is sensible if at least one of the eigenvalues is 
non-zero). In the case that lzll = Iz2( = = 1121 = 0, then 10,O; 0,O) = I l , O ,  0), the ground 
state. The norm of the state vector is given by the square root of 

BG(Z1,  z 2 ;  51 3 52lZl 9 z 2 ;  51 9 12)BC- = IO(2P) (38) 
where p =[1z,12+1z212+15112+~5212]1/2. For example, when neither z1 nor l1 is zero, 

the final equality following from Graf's addition theorem for Bessel functions 
(Abramowitz and Stegun 1965, Watson 1922). 
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When the system is prepared in the state Izl, z2, 11, 52)BG then the expectation value 
and the uncertainty of the constant operator N are given by 

CLIl(2P) 
A(p)=---. 

I O h  1 
From the asymptotic expansions of Io and I ,  , then as p + m, 

( N )  = p +a+ O ( p - ’ )  AN = &+O(p-”2) ,  

The asymptotic expansion of the relative uncertainty is now given by 

which decays to 0 as p + 00. It can also be shown that 

where A ( p )  is as before, with similar results for (A3) and 
behaviour of 12(2p) is given by (Abramowitz and Stegun 1965) 

The asymptotic 

so that as p +a, for example, 

(L,) = (Irl12-1~112)(11-1-al*.-2+o~cL-3~~ 

((LA2) = p-3{(lz112 + 15,12~~~lz112 +m2 + 1Z2l2 + 15212) + 2 1 Z 1 ~ 2 5 1 5 2 1 ~  + O(1). 
(45) 

Since lzll, (z2/, Ill/, /121 are all of order p as p + 03, then (L4), (A,) are of order p and 
AL,,  AA, are of order Similarly, ( L J ,  (L2) ,  (Al),  (A2), are also of order p as 
p + CO, for example, 

Furthermore, it is not hard to see that A L 1 ,  AL2, AAl, AA2, are of order p1 /2 .  Because 
the uncertainties of L, A, N are of order p‘ l2  and their expectation values are of order 
p as p +CO, the state is concentrated onto the corresponding classical orbit, at least 
in so(4,2) variable space, as that limit is approached. By this, we mean that if we take 
the formal limit as p + CO, h + 0 such that hp  is kept constant, then the particle is 
found on the corresponding orbit with certainty. This implies that the Barut-Girardello 
states and their time evolution give a quasiclassical approximation to the orbit, at least 
as far as the constant operators are concerned. 
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We now consider the expectation values and uncertainties of the non-constant 
operators (r, M, r,, T). These can be calculated in closed form at t = 0. The expecta- 
tion values at t = 0 can be calculated from (35)  and 

( a , )  = z1 (a,) = 2 2  (b l )  = 51 ( b 2 )  = 5 2  (47) 

so that (r)* + (M)’+ (T,)’+ (T)’ = 2p2. The uncertainties at t = 0 are now given by 

AMl 5 AM2 = AM3 = Or, = A r 2  = Ar3 = AT = Ar, = m. (48) 
Thus the uncertainties are of order P ” ~ ,  and the state is quasiclassical at t = 0 (localised 
in so(4,2) variable space as p + 00). 

From the constancy of the operators (M1)’+ ( M 2 ) , +  (r,),, ( M 3 ) 2 +  (r3),, 
T2+(r4),, which follow from (9), we have at all times, 

(49) + ((TI )2) = I ~1 - 51 1’ + A ( p )  + 1 

with similar expressions for (( M2)2)+((r2)2), ((M3),)+((r3),), ( T’)+((r4),). Therefore 
the four expressions (AMI),+(Arl),,  (AM2),+ (AT,)’, (AM3),+ (Ar,)’, (AT)’+ (AT,)’ 
are bounded above. Similarly, by the generalised uncertainty relations, the four 
products (AMl)2(Arl)2, (AM,)’(AT,)’, (AM3)2(Ar3)2, (AT)2(AI-4)z are bounded below. 
For example, 

(AMl)2(ATl)2aa(N)2 = a ( h ( p )  + 1)’ (50) 

( A M l ) 2 + ( A T 1 ) 2 ~  h ( p ) +  1 (51)  

and similarly for the other products, so that the sums are all also bounded below: 

and similarly for the other sums. These lower bounds are attained at t = 0. 
The time evolution of the Barut-Girardello state is given by 

where the notation is as in (37),  and we have put I+(O))= Izl, z,; 11, 52)8G. Then the 
expectation values of the non-constant operators at later times are given from (35) and 

( a , )  = Z l ( t )  (a2) = z2(2) (b’ )  = 51(t) (b’) = 5 2 ( t )  (53)  
where z l ( t )  = z,S, z 2 ( t )  = z2S,  l l ( t )  = llS, & ( t )  = 12S, and 

The sum S appears to be intractable, but it is the asymptotic behaviour of S which 
interests us. By a similar ‘renormalisation’ method to that for the so(2, 1) case, we 
find for large p, 

( 5 5 )  
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with F as in (54). In ( 5 5 ) ,  the asymptotic behaviour of the coefficient of t in the 
exponential in F is given by 

For times t of order p3, i.e., times of the order of the classical period T =  

2 ~ ( - 2 ( H ) ) - ~ ’ ~ = 2 7 r p ~ ,  we put t=&p3  with & = 0 ( 1 ) ,  so that we have S-exp(-i&). 
The expectation values of the non-constant operators therefore follow the correspond- 
ing classical trajectory: for times t = o(p’”),  we have 

(r(t)*iM(t))-(r(o)*iiM(O)) exp(*it/p3) 
(r,(t) *iT(t)) -(r4(0) *iT(O)) exp(*it/p3). (57) 

From (49), (50) and (57), it can be seen that the uncertainties also maintain their 
minimum values over t = O(p3) ,  i.e., the states do not spread over times of the order 
of the classical period, and so can be regarded as quasiclassical for such times. 

For times t = O(p712), we put t = ap7’2 with a = O( 1) and see that 
s - exp( -fa2 - i a a )  

( r 4 ( t ) * i ~ ( t ) ) - ( r 4 ( 0 ) * i ~ ( 0 ) )  exp( - fa2*ia&).  
so that 

The expectation values therefore decay as a Gaussian function of time with a charac- 
teristic time of order p712 (i.e. of order T ” ~ ) .  We now have 

( 5 8 )  

(59) 
with similar results for ( M 2 ) 2  + (r2)2, ( M 3 ) 2  + (T,)’, ( T)2  + (T,)’, and the corresponding 
sums of squares of uncertainties. Therefore the uncertainties of the non-constant 
operators increase until these sums attain their maximum possible value of A ( p )  + 1. 
Thus the state spreads over times of order p712, and the associated probability distribu- 
tion appears to become uniformly smeared around the orbit in so(4,2) variable space. 

Just as in the so(2, l )  case, there is also unusual behaviour for times of order p4. 
If J is an integer and the time differs from 37rJp4 by an interval of order p’I2 then 
r =37rJp4+ap7/* with a = 0 ( 1 ) .  By the same sort of argument as those used in the 
so(2, l )  case, we get 

( M , ) 2 + ( r , ) 2 -  Izl -l1I2 exp( - I C ’ )  

( A M , ) ’ +  (AT, )2 -  Iz, - J , I 2 (  1 -exp( - ja2) )  + A(p)  + 1 

and so 

8 rrJp 9a2( 1 - i47rJ) 
i aG-4(1  + 167r2J2) 

S -  

so that 

(-1)’ 
J E Z z  (r( t )  * iM( r ) )  - (r(0) * iM(0)) 
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Therefore (r), ( M ) ,  (r,) and ( T )  become significant at times near$rJp4( = fJ( T ~ / ~ T ) ” ~ )  

when the original coherence tries to ‘reassert’ itself. We therefore have 

1 + 1 6 r 2 J 2  2( 1 + 16.rr2J2) 

and so 

) + A h ) +  1 
exp(-9a2/2( 1 + 16.rr2J2)) 

ATiiGT 
with similar results for ( M2)’ + (r2)2, (AM2)’+ (AT,)’, etc. 

These results can be summarised as follows. The states are quasiclassical for times 
of the order of the classical period T,  and the expectation values of the non-constant 
operators follow the classically predicted trajectory to within a factor of O(p-”’) .  
The uncertainties remain constant to within a similar factor. For times of order T ” ~ ,  

the expectation values of the non-constant operators decay to zero and the uncertainties 
increase until the sum of their squares reaches the maximum possible value. The 
uncertainties become of the order of (r,) - p, so that for times of this order, the states 
are no longer quasiclassical. Effectively, the states spread around the classical orbit. 
A surprising feature is that the states partially reassert their coherence, with the 
expectation values of non-constant operators diverging from zero, at regular intervals 
of ; ( T ~ / ~ T ) ” ~ .  Each of the uncertainties of the non-constant operators also diverges 
from its limiting value at regular intervals of f.rrp4( = t(T4/2.rr)ii3). 

As in the so(2 , l )  case, the quasiclassical states are all quasiperiodic. In particular, 
for large p, at times which are integral multiples of 4.rrv2, where v is an integer divisible 
by all integers less than or equal to p + K G +  1, and greater than or equal to p - K&- 

1, then 

(n, 111, PI+(t)) = (n ,  111, Pl+(O)) 

% { ( + ( t ) l + ( 0 ) ) } 3 2  erf K - 1+0(p-”’), 

if p - K & - l a n S p + K G + l ,  and so 

Then, with S as in (54), 

%(s)  3 2 erf K - 1 + ~(p.”’), 

so that the expectation values (r), ( M ) ,  (r4) and ( T )  approach their initial values 
arbitrarily closely, and their uncertainties approach their initial (minimum) values 
arbitrarily closely. Just as in the so(2, 1) case, 

l n v = 2 ~ & l n p ( l + o ( l ) ) .  

The time required for quasiperiodicity is typically extremely large, as discussed at the 
end of the last section. 

5. Conclusion 

We have defined quasiclassical (or quasicoherent) states for the Coulomb problem, 
based on Barut-Girardello coherent states of an so(4,2) dynamical algebra, and we 
have determined some of their basic properties. In particular, we have seen that these 
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states evolve in such a way under the Coulomb Hamiltonian that the degree of spreading 
is insignificant for times of the order of the corresponding classical period r, though 
significant for times of order T ” ~ .  

We believe that these states may be of considerable interest for various applications. 
Yeazell and Stroud (1988) have recently observed quasiclassical states for the sodium 
atom. These states are localised with respect to the polar coordinates 8 and 4 but not 
with respect to the radial distance r. They were produced experimentally by acting on 
sodium atoms with a short-pulse optical excitation in the presence of a strong back- 
ground radiation field. Our approach could be modified to define states of alkali atoms 
which act in a quasiclassical way, by taking the atom as a central core (the positively 
charged ion) plus a single electron, so that the atom is approximately hydrogen-like. 
This approximation will not be good for low energies (near the ground state) but can 
be expected to be very close for highly excited states. The quasiclassical states which 
are of major interest are therefore the ones corresponding to large quantum numbers, 
so that our analysis should be of relevance in this case. It may soon be possible to 
observe experimentally, quasiclassical near-ionisation states of hydrogen, and it would 
be very interesting to see if fluctuations at times of order r4’3 (i.e. ‘resurgence of 
coherence’) could be observed. 

Quasicoherent states of hydrogen (or alkali atoms) might well be useful in the 
description of interactions between radiation and atoms of this type in the near- 
ionisation region. 

They might also be used to define a basis of states for multi-electron atoms, where 
quasicoherent states of the whole system could be constructed as antisymmetrised 
tensor products of individual Coulomb-system coherent states. 
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